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Abstract

Deep learning has exhibited strong performance over a range of computer vision
tasks with an especially large research area focusing on the medical imaging
domain, given the high cost of human prediction and large potential upside of
automating this procedure. However, generalizability of these models is often
underwhelming and remains a significant barrier to widespread adoption. Often
this poor performance on new (out-of-distribution) data is due to hidden spurious
signals in the original dataset which the model leverages during training. In chest
x-rays, previous work has indicated these signals to be outside the lung boundaries
(non-ROI) where left/right markers and other auxiliary information is placed. To
examine the significance of these artifacts on model performance, lung boundary
masks are acquired for two classification datasets and applied to hide the non-ROI
region within each image. Classification performance on the resulting datasets
show mixed improvement in model generalizability when predicting pneumonia
on an out-of-distribution dataset, indicating that masking the non-ROI region may
force the model to learn more from physiological signals over spurious background
artifacts. Despite this promising result, when trained directly to leverage these
spurious artifacts (by predicting hospital system), the model is able to predict
hospital systems with near perfect accuracy under a heavily data-constrained
scenario, implying that significant noise exists within the ROI, requiring more
advanced techniques than simple masking to remove it. Code can be found at
https://github.com/basedrhys/non-roi-masking.

1 Introduction

Computer-aided prediction of radiographic images is a task well suited for the application of deep
learning, given the large size of datasets and high cost of human prediction (requiring expert radiolo-
gists). Approaches that tackle this task commonly report performance metrics on a held-out test set,
which although is unseen during training, is from the same distribution as the original training data and
so gives an overestimate of real-world performance when applied to new datasets due to distribution
shift. Unfortunately, model performance often drops under these conditions [14] which has created a
barrier to real-world adoption of this technology; if model performance degrades significantly when
applied to images from a new hospital, the model is learning from a hidden/unwanted signal in the
data (assuming that a given disease presents identically wherever imaged). In this report I employ
the term nuisance to refer to this signal [8]. Due to the often-insidious nature of these nuisances
(difficult/impossible for humans to recognize), if it changes imperceptibly in production, the model
performance can suffer without a clear indication.
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One area identified in previous work is the area outside the ROI (referred to as non-ROI), which can
include information such as the L/R marker, x-ray position description, and other patient informa-
tion [14]. This project performs an empirical investigation into this nuisance signal and proposes
a candidate solution: non-ROI masking. If the primary spurious signals are in the non-ROI region,
then masking this out should force the model to learn from more physiologically-based signals;
as a consequence, generalization (as measured by performance on an out-of-distribution dataset)
should improve. In the case of no change in performance, these experiments provide evidence for a
counter-statement: the primary (or significant) nuisances exist within the image ROI, meaning they
are non-trivial to remove. In particular, I am asking two research questions:

• Does masking the non-ROI improve model generalization (by forcing the model to learn
from more physiologically-based signal over nuisance)?

• How strong and deeply embedded can this nuisance info be? Can it be mitigated significantly
via non-ROI masking?

To investigate the strength/location of nuisance data in Chest X-rays, I perform an experimentation of
non-ROI masking: hiding everything in the image outside the lung boundaries (which shouldn’t be
used for disease prediction). To achieve this, a UNET model is trained to segment lung boundaries in
PA chest x-rays and applied to images in two curated classification tasks: pneumonia prediction and
hospital prediction. A separate classification model is then trained and evaluated on variations of
each dataset, with the resulting performance acting as a proxy answer to the research questions above.

The experiments indicate that non-ROI masking has promise as a method for improving model
generalizability, shown by a significant improvement in classification performance when applying a
trained pneumonia predictor to an unseen dataset from a separate hospital. This trend does not hold
in all out-of-distribution cases, however, so further experimentation on other datasets is required to
validate these findings.

When predicting hospital system from chest x-rays, the model is able to predict with perfect accuracy
under all mask variations (variations outlined in §2.3), and with near-perfect accuracy under a heavily
data-constrained scenario (limited training instances, tiny image region). These results confirm
findings found in previous work [1], that medical image datasets contain deeply embedded spurious
artifacts within the ROI, and further processing should be applied to mitigate these artifacts before
training deep learning models for prediction.

2 Evaluation Datasets

I employ two binary classification tasks to evaluate the effectiveness of non-ROI masking, namely
Pneumonia Prediction and Hospital Prediction.

2.1 Pneumonia Prediction

Pneumonia is a common lung disease, seriously effecting pediatric patients and causing an estimated
2 million deaths in children under 5 years old every year making it the estimated leading cause of
childhood mortality [10]. This disease is commonly diagnosed by radiological analysis of chest
x-rays, so is a prime candidate for deep learning.

To evaluate the domain-generalizability improvements caused by non-ROI masking, I use two
pneumonia classification datasets; one for training/validation and the other for testing. Using a
completely distinct test dataset (rather than simply reserving some portion of the original dataset) is
important as this scenario (referred to as out-of-distribution) is where deep learning models commonly
fail [14].

Refer to Appendix A for dataset sizes. The first pneumonia dataset is the Pediatric Pneumonia
Detection dataset [7], comprised of 5k chest X-rays from children.

The second pneumonia prediction dataset is the CheXpert Pneumonia Detection [5] dataset. CheXpert
is a large multi-label chest X-ray classification dataset (224,316 images) with each instance containing
0 or more of 14 different pathologies. To make this comparable to the Pediatric dataset, I modified the
dataset into a binary classification task by labelling an instance as NORMAL if the No Finding label
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was positive (and no other labels positive), and labelled PNEUMONIA if the Pneumonia label was posi-
tive. Other labels were occasionally also positive with Pneumonia, but these instances were left in due
to their strong correlation/indication of pneumonia (e.g., Pneumonia causes Lung Consolidation,
so one would expect these two labels to co-occur frequently in the dataset). The resulting dataset
contains 14228 instances (9553 NORMAL, 4675 PNEUMONIA).

2.2 Hospital Prediction

I design a binary hospital prediction task to test the research question directly: how strong and deeply
embedded can this nuisance information be?; a model tasked with predicting which hospital an x-ray
came from will utilise all spurious/nuisance features available in the data, so training in this manner
will learn from the nuisance signals clearly. It should be noted that this is an "anti-task", where I
am aiming for the lowest prediction accuracy possible; this result would imply that images from
each hospital are visually homogenous, reducing/eliminating the effect of nuisance signals and the
downstream problems they cause.

The dataset for this task is collated from two open-access chest x-ray datasets:

• CheXpert [5]: 224k images, sourced from Stanford Hospital.
• ChestX-ray14 [13]: 112k images, compiled by the NIH from the NIH Clinical Center.

CheXpert contains both PA (front view) and Lateral (side view) x-rays, while ChestX-ray14 only
contains PA images. All lateral x-rays (32,419) were removed to induce further homogeneity and
avoid any obvious spurious signals in the data that may contribute to predicting hospital system.
The Indiana University [2] dataset which was used in previous work on generalizability [14] is
open-access, however the lateral images are not labelled clearly and cannot be trivially removed, so
this dataset was left out of experimentation.

Refer to Appendix A for exact dataset sizes.

2.3 Dataset / Mask Processing

Once fully trained, the lung segmentation model (§3.1) was used to generate lung masks for all
images in the evaluation datasets. Predicted segmentation maps are commonly noisy with irregular
borders, so basic image processing methods were applied to smooth the masks out. A morphological
open was applied to remove small noisy blobs while retaining the larger lung regions, before applying
a median blur to smooth the edges of the mask. I also removed instances where the smoothed mask
was too small (< 20% of the total image area) as this was usually due to a poorly predicted mask
(e.g., missed a lung); these post-processing steps aim to limit any confounding effects of applying
the masks themselves. Appendix A details the evaluation datasets used, with the final postprocessed
size in parentheses. From these smoothed masks, four versions of each dataset were created to better
identify the behaviour of models trained under non-ROI masking (refer to Figure 1 for example
images):

• None (baseline): No masking applied. This leaves all information visible to the model to
learn from, so is expected that maximal learning from nuisance signals will occur.

• Raw: Apply the smoothed masks as-is to the original image. The segmentation masks for
each lung trace tightly around the lung boundary, excluding the heart outline and space
between left/right lungs, so this version of the dataset masks out as much of the image as
possible while retaining the regions where lung disease can be present.

• Convex Hull: Create a convex hull from the smoothed masks. This includes more anatom-
ical information than Raw (space between lungs, heart, oesophagus) while still excluding
non-ROI information.

• Crop: Naive crop strategy - ignore the predicted mask and only keep the center third square
of the image. Although hiding most/all of the non-ROI, this also hides much of the lung
area so is expected to decrease disease prediction performance. Compared to the masking
approaches above, the Crop masked area is held constant across images, ensuring that
applying the mask is not adding any more spurious signals; for example, some images may
have poorly predicted lung masks, so applying these back to the image could sway the
model’s predictions even further.
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Figure 1: Dataset versions

CheXpert → Pediatric Pediatric → CheXpert
Data Variation F1 AUROC F1 AUROC

None 0.729 (0.02) 0.876 (0.01) 0.533 (0.01) 0.715 (0.01)
Crop 0.707 (0.02) 0.767 (0.01) 0.413 (0.01) 0.617 (0.01)
Raw 0.524 (0.01) 0.753 (0.02) 0.526 (0.01) 0.696 (0.01)
Convex Hull 0.615 (0.03) 0.798 (0.02) 0.576 (0.01) 0.777 (0.01)

Table 1: Out of distribution results for pneumonia classification. Left columns represent model
trained on CheXpert and evaluated on Pediatric, vice versa for right columns. SEM in parentheses.
Color coding is applied column-wise from green-red.

3 Models

3.1 Lung Segmentation Model

To study the spurious information present in the non-ROI region of chest x-rays, we need accurate
lung masks to mask this region. Unfortunately, the evaluation datasets used do not have ground
truth lung/chest masks included so I trained a lung segmentation model to acquire these. The lung
segmentation model training dataset consists of two public chest X-ray datasets compiled by the U.S.
National Library of Medicine designed for the diagnosis of pulmonary tuberculosis [6], containing
PA chest x-rays from Montgomery County Hospital and Shenzen No.3 People’s Hospital. There are
704 images with expert-labelled lung boundary masks which were used as the ground-truth label for
the lung segmentation model.

I use the UNET [9] architecture with an ImageNet pretrained ResNet50 [3] as the backbone. The
model is trained for 8 epochs with a learning rate of 1e−5 using the fastai[4] library, reaching a
Sørensen–Dice coefficient (Dice score) of 0.965.

3.2 Image Classification Model

I trained an image classification model on each dataset version to evaluate the effect that non-ROI
masking has on downstream model performance. Images were resized to a square 448x448 size with
zero-padding. An ImageNet pretrained ResNet50 model is used as the classification model for the
evaluation datasets, trained until AUROC saturates (~12 epochs) with a batch size of 32 and learning
rate of 3e−4.

4 Results

4.1 Pneumonia Prediction

Each model is evaluated in an out-of-distribution manner: trained on one pneumonia classification
dataset, and tested on another. This testing regime presents a more accurate view of real-world model
performance than simple train/val/test splitting, due to the distribution shift between the two datasets
simulating real-world applications.
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Figure 2: Saliency Map from [14], showing strong reliance on non-ROI signal

Refer to table 1 for results. The Raw mask version performed worst overall, likely due to the minimal
information that’s kept (only that strictly within eacn individual lung boundary), as well as the
potential for confounding information with the detailed lung mask.

CheXpert → Pediatric: When training on CheXpert and evaluating on Pediatric, the highest
performance was obtained by the None model, achieving an F1 and AUROC of 0.729 and 0.876,
respectively. Interestingly, the Crop model achieved the second highest F1 score (even beating
Convex Hull which can see the entire chest cavity), indicating that cropping to the center third
may maintain some physiological signal (or at least enough to predict pneumonia). The Raw model
performed the worst.

Pediatric → CheXpert: Swapping the train/test datasets (model trained on Pediatric was evaluated
on the CheXpert), the Convex Hull model generalised best, achieving an AUROC of 0.777, a
significant improvement over the None model which only achieved an AUROC of 0.715. The None
model achieved the highest AUROC of 0.99 on the internal validation set while Convex Hull
achieved a slightly lower AUROC of 0.972; this indicates that during training, the None model may
have been leveraging spurious signal outside the ROI to reach higher performance on the validation
set, however this led its performance to degrade on a new dataset when these spurious signals change.

4.2 Hospital Prediction

For this question, I reproduce and extend previous work [14] which found that predicting hospital
systems could be done with 99% accuracy. In the binary hospital classification task, there was no
variability in model performance, with all data variations achieving perfect F1 and AUROC scores of
1.0. Because of the perfect accuracy, it is highly unlikely that the model is using physiologically-based
signals for the task, but rather the spurious artifacts, showing the strength of these.

To test this result further, I subsampled the datasets down to only 1000 images per class (~1% of
the original data) and took a random 50px crop from the Crop dataset (i.e., the 50px crop occured
randomly within the center third of the image). Even in this heavily constrained scenario, the model
still achieved an AUROC of 0.976.

These results indicate that medical imaging datasets can contain strong, deeply embedded spurious
artifacts that are non-trivial to remove; even a minute crop (which kept little more than the width of
the spine) had a minimal effect on hospital prediction performance, with the model still predicting
highly accurately; therefore, merely hiding the non-ROI region via masking will have limited effect
on nuisance signals within the image.

4.2.1 Validity of Saliency Maps

Although commonly used for post-hoc model explanations, saliency map methods (e.g., Grad-
CAM [12]) have been criticized for producing misleading or otherwise inaccurate instance-level
model explanations [11]. Figure 2 was shown in previous work looking at model generalizability [14],
which implies that for the same task as discussed above (hospital prediction), the model is heavily
leveraging non-ROI signals. It should be noted that slightly different datasets were used in our work
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so the results discussed above aren’t perfectly comparable, however, the results presented in this work
show that a model can distinguish hospitals perfectly with these supposedly high-influence regions
hidden.

This does not imply that the saliency maps presented are technically incorrect but rather that they
are misleading, due to the normalised nature of the heatmaps; saliency maps are normalised to a 0-1
interval, so even if the center part of the image is highly influential in model predictions (which is
shown to be the case), if the non-ROI region is more influential, that is what will be highlighted in
the saliency map.

5 Conclusion

I perform an empirical study of non-ROI masking in PA chest x-rays, evaluating it under the goal
of generalizability in disease prediction. Through testing on out-of-distribution datasets, we find an
improvement in performance when masking images with a convex hull constructed from individual
lung masks, keeping visual information within the chest cavity but masking signal outside the ROI.
Despite this, the trend is not consistent across all test cases indicating that some datasets contain more
non-ROI-based nuisance than others, so further research is required (i.e., by training/evaluating on
more datasets).

I also study the influence of spurious signals directly by training a model to predict hospital system
from chest x-ray. The results confirm prior work, showing this task can be achieved with perfect
accuracy. I also show that this task can be completed with near-perfect accuracy under a severely
data-limited scenario, indicating the predictive influence spurious image artifacts can have when
trained on directly.

The results show that image datasets contain deeply embedded nuisance correlations that are non-
trivial to remove, so more advanced processing should be applied before training and deploying deep
models in a healthcare setting.
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A Dataset Sizes

Dataset Name +ve # -ve

Pediatric 3883 1349
(1193) (1074)

CheXpert 4675 9553
(3730) (8550)

Dataset Name # CheXpert # ChestX-Ray14

Hospital Prediction 224,316 112,120
(156,787) (81,930)

Table 2: Instances for pneumonia prediction task (left) and hospital prediction (right). Values in
parentheses denote dataset size after cleaning.
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